Contents
1 背景介绍 2
1.1 行人检测 2
1.2 存在的问题及发展 2
1.3 常见检测技术 2
1.3.1 基于运动检测的算法 2
1.3.2 基于机器学习的方法 2
1.3.3 基于深度学习的方法 3
3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7
6.3 GUI 11
1 背景介绍
1.1 行人检测
行人检测 ( Pedestrian Detection ) 一直是计算机视觉研究中的热点和难点。行人检测要解决的问题是:找出图像或视频帧中所有的行人,包括位置和大小,一般用矩形框表示,和人脸检测类似,这也是典型的目标检测问题。
行人检测技术有很强的使用价值,它可以与行人跟踪,行人重识别等技术结合,应用于汽车无人驾驶系统
( ADAS ),智能机器人,智能视频监控,人体行为分析,客流统计系统,智能交通等领域。
1.2 存在的问题及发展
由于人体具有相当的柔性,因此会有各种姿态和形状,其外观受穿着,姿态,视角等影响非常大,另外还面临着遮挡、光照等因素的影响,这使得行人检测成为计算机视觉领域中一个极具挑战性的课题。行人检测要解决的主要难题是:
1. 外观差异大。包括视角,姿态,服饰和附着物,光照,成像距离等。从不同的角度看过去,行人的外观是很不一样的。处于不同姿态的行人,外观差异也很大。由于人穿的衣服不同,以及打伞、戴帽子、戴围巾、提行李等附着物的影响,外观差异也非常大。光照的差异也导致了一些困难。远距离的人体和近距离的人体, 在外观上差别也非常大。
2. 遮挡问题。在很多应用场景中,行人非常密集,存在严重的遮挡,我们只能看到人体的一部分,这对检
测算法带来了严重的挑战。
3. 背景复杂。无论是室内还是室外,行人检测一般面临的背景都非常复杂,有些物体的外观和形状、颜色、纹理很像人体,导致算法无法准确的区分。检测速度。行人检测一般采用了复杂的模型,运算量相当大, 要达到实时非常困难,一般需要大量的优化。
早期的算法使用了图像处理,模式识别中的一些简单方法,准确率低。随着训练样本规模的增大,如INRIA 数据库 [1]、Caltech 数据库 [2] 和 TUD 行人数据库 [3] 等的出现,出现了精度越来越高的算法,另一方面,算法的运行速度也被不断提升。按照实现原理,我们可以将这些算法可以分为基于运动检测的算法和基于机器学习的算法两大类,接下来分别进行介绍。







